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ABSTRACT

The main structure underlying the nonlinearity of conservation laws of

gasdynamical type in two independent variables is discussed at the hand of a

canonical example describing also properties of water waves near shore. The

ultimately singular nature of such laws is here the central issue and calls

for an unusual formulation. Attention is directed to the globally strong

solutions, and an unusual regularization is employed to make them accessible,

after illposedness is overcome. The usual regularity theory is not normally

sufficient for singular partial differential equations, and the necessary

additional chapter on extensions to the singular locus is developed in detail

for the canonical example. Criteria for the relation between regularized and

strong solutions are discussed and used to characterize the class of solutions

that are globally strong in the strictest sense.,
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SIGNIFICANCE AND EXPLANATION

This report discusses aspects of conservation laws and of waves on

beaches close to shore.

Conservation laws of the type governing gas dynamics and explosion theory

have attracted much attention in this century because they are strikingly

nonlinear wave equations. This report addresses the question: What concrete

structure is here hinted at by the term "nonlinear" and is responsible for the

tendency of solutions to "blow up", and how can this underlying structure be

crystallized and illuminated? It will be shown to be related to a wider

question: We are used to finding the structure of ordinary differential

equations crystallized in the singularities of the coefficients in those

equations; should not something similar be expected of partial differential

equations? The report makes a determined foray into this little-explored

field, in order to open a new window on the connection between nonlinearity

and singularity in partial differential equations.

To that end, a definite conservation law in two independent variables is

here studied, which is both very simple and very typical of the gasdynamic

class of such laws, in effect, a canonical example offering scope for great

lucidity. It is also an oceanographical model of properties of water waves

over a beach of small slope and holds the key to shore reflection, which is a

sorely missing link in the application of wave theory to coastal oceanography.

Earlier work by the author and his collaborators elucidated a very

singular solution class of this mode. This report concentrates on the more

regular solution classes and shows how the singularity of the partial

differential equations controls them also.

The report is one of a triplet, of which another explains the unusual

formulation while the last, gives applications to coastal oceanography and

engineering.

The responsibility for the wording and views expressed in this descriptive Is
summary lies with MRC, and not with the author of this report.
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REGULARITY FOR A SINGULAR CONSERVATION LAW

R. E. Meyer

I. INTRODUCTION

The singularities of the coefficient functions in ordinary differential equations are

well-known to crystallize their solution structurel for linear analytic equation, in fact,

they determine it completely. Something similar would plausibly be expected of partiaL

differential equations, but the issue has received little attention yet. It leads in

unfamiliar directions, moreover, away from the mainstream of contemporary theory. ice it

is a very large subject, early exploration is best focused on specific question.. I gas

dynamics has helped to precipitate one coherent set of problems arising from its Lnear

conservation laws.

All of those are capable of degeneracy, and it was a surprising observation th the

degeneracy of steady supersonic flow at an axis of symmetry [1], that of unsteady ont-

dimensional, and steady two-dimensional, motion at vacuum [2], and that of shallow-water

equations at a dry-line (3], share a common mathematical representation. It was an even

more intriguing observation that this degeneracy caused not only local singularity of

solutions [1, 4, 5], but could have a notable, long-range influence on solution structure

quite far from the singular locus of the conservation laws [4, 6, 7]. A suspicion arose

that this degeneracy might crystallize a major component of the underlying structures that

make those conservation laws "nonlinear" (8]. One aim of the following is to elucidate

more definitely why the degeneracy does indeed crystallize the tendency to "blow-up" for

conservation laws of gas dynamical type (Section 5).

These observations suggested a scope for a theory of quite a large class of

conservation laws from the point of view of a common denominator. There are also very

appreciable differences, however, between the differential equations of the examples just

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and partly
supported by National Science Foundation Grant No. MCS-8215064 and a Senior Fellowship of
the British Science and Engineering Research Councili the author is also indebted to the
Imperial College, London, for hospitality during the drafting of the report.
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mentioned. The rigorous, local theory of one of them [9] shows how much the distinguishing

features can add to the apparatus describing the solutions in detail. At the present stage

of exploration, it may be more helpful to proceed in the opposite direction of illuminating

the heart of the matter at the hand of a particularly typical example stripped of all

complications that are not central to the singularity structure. Such a canonical example

is offered by the equations

-h + L- (hu) = 0

TF ax
au+ L (h + . 2 )-i

for two functions h(x,t) and u(x,t) first proposed by Stoker [3) as a speculative model

of waves on beaches. This is the system studied directly in the following, with only brief

comments (Section 2) on the complications arising for other systems of the class of which

* the example illuminates the key features.

Experience with singular points of ordinary differential equations suggests that some

solutions of singular conservation laws may be relatively "regular", while others may be

more "singular." Since the latter are more exciting, earlier investigations concentrated

upon them. One class was investigated rather thoroughly for axisymmetric supersonic flow

[1, 9, 10]. A much more singular class was discovered for the canonical example [5, 7].

Preoccupation with possible "pathology", however, tends to create biased impressions

obscuring the overall picture. To create a balanced basis for a singularity theory of

conservation laws, the present investigation concentrates on the "more regular" solutions.

It will reveal a background-hierarchy of solution regularity ordered by a concept of

"n-compatibility" (Section 3). The earlier investigations are then seen to concern

n - -1 (l, 9, 10] and n - -2 [5, 7], while the present one concentrates on n ) 0.

'Strong' solutions of the conservation laws as differential equations then become important

and this raises the familiar issue of their tendency to "shock-formation" or "blow-up":

most, if not all, strong solutions have a very restricted domain of existence, which is

awkward to predict and describe. In any case, they have ceased to exist long before they

can display the singularity which this account will demonstrate to be the essential cause

-2-
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of their "blow-up". In fact, there is evidence U1, 11] against the existence of strong

solutions that are global in any strict sense. On the other hand, a few special examples

of such solutions have been found [12, 13], and the question arises whether they are

isolated, special cases or whether they form a generic set of significance?

The most familiar expedient for coping with the severe restrictions on existence of

strong solutions is recourse to weak solutions, but it is not helpful in the present

context. Indeed, the "jump conditions" or "shock conditions" of the conservation lew will

not even be introduced in the following, because they lead promptly (4, 5] to the

occurrence of the violent singularity [7], which then pre-empts the whole foreground so as

to obscure everything else. Instead, a less familiar method of regularization [14] will be

employed which associates with the conservation law a different system of differential

equations.

This does not, of course, dispose of all difficulties; it shifts them to a subtler

arena. It is relatively easy to imagine seeing what questions should be asked of the

conservation laws. By contrast, the "apparent equations" -- to avoid burdening the text

with constant repetition of the clumsily un-English word regularized -- admit a plethora of

problems which look mathematically reasonable. Many have been studied, but almost all of

them are academic in the sense that they generate only theorems barren of good information

on the conservation laws. Many are ill-posed to some extent, but for singular partial

differential equations, well-posedness in a conventional sense cannot serve as a

signpost. It has taken a long time to sort the grain from the chaff, and the correct and

fruitful formulation is unfamiliar in many respects. It is explained in detail, with a

full motivation for it, in a related account (15] that leans heavily on physical

considerations. The mathematical reasons for it would take excessive space to explain in

advance because they must lean largely on hindsight from the proofs and on frustration with

barren theorems. A summary [Section 2) of the formulation arrived at in [15] will

therefore be more helpful here. The mathematical reasons will be mentioned where the

* proofs touch on them.
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Additional specifications which make the "apparent problem" well-posed are introduced

in Section 3 and shown to lead to existence, uniqueness, stability and regularity in the

usual sense. It may be the most significant insight here gained that this to inadequate

for singular partial differential equations: solution regularity becomes non-uniform near

the singular locus. To understand solution structure then requires a further chapter of

regularity theory which explores the existence of extensions to the singular locus. Such a

theory is developed in detail in Section 4 for the canonical example.

Section 5 turns to the relation between apparent solutions and solutions of the

conservation law to show why the extensions to the singular locus are also decisive for

this relation. That discussion also helps to show how intimately the "nonlinear" tendency

to shock-formation is linked to the singularity structure.

Those results are used in Section 6 to formulate a correct amplitude concept for a

characterization of the class of solutions of the conservation law which are globally

strong in the strictest sense. They do turn out to form a generic set essential for an

understanding of the conservation law and, together with the singular solutions discussed

by earlier studies (1, 4, 5, 7, 9, 10], offer a reasonably comprehensive, mathematical

picture.

A decisive point which the picture misses is the amazing, long-range influence of the

singularity upon the global structure even of regular solutions at large distances from the

singular locus. That is best demonstrated at the hand of an application [16] of the

present results to waves on beaches.

0
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2. THE MODEL

The "beach equations"

S + a (hu) 0 ()
t ax

u + ( (2)

at x0 2

give (15 Section TV, 17] an approximate description of the local water depth h(x,t) and

(vertically averaged) horizontal velocity u(x,t) of inviscid, irrotational motion under

gravity of water with a free surface over a beach of small slope at time t and distance

-x from the undisturbed shore position (Fig. 1); h0 (x) is the known, undisturbed water

depth. All the variables have been made non-dimensional by reference to an unknown scaling

[15 Section IV], and this places a serious, if vague, restriction on the "confidence

domain" in which (1), (2) are a model of water waves. These equations must therefore be

restricted to a "beach domain" {x,t : 0 < h(x,t) < const.), and for simplicity of

notation, this constant will be taken here as 1/16.

The equations are a quasi-linear, hyperbolic system with degeneracy at the 'free

boundary' h(x,t) - 0, which represents the moving shoreline. Effective analysis of such

a system must cope with its well-known tendency to "shock formation" by an extension of the

solution concept, and the beach equations lend themselves to a particularly lucid

exposition because an extension suitable for present purposes can be achieved trivially

simply, if attention be henceforth restricted to beaches of uniform slope, so that

ho(x) = -x

Then

a- 2h1/2 + u + t - , =2h/2 _ u _ t +1 (3)
2

are Riemann invariants of (1), (2), and their adoption as independent variable yields the

regularization to be used here. (For other conservation laws, a less obvious choice of

characteristic variables may be needed for the same purpose (14].) This step suffices,

moreover, to transform the unknown, moving boundary into the fixed line

4h/2= a + B = 0

-5-
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(That the singular locus can be made explicit is typical of hyperbolic conservation laws,

even if the coordinates achieving it are not normally as straightforward.)

The transformation to the independent variables (3) takes (1), (2) into

ax _ 
1/2  at ax 1/2 t

(u + h (u - h/2)as I T

for x(a,O). t(a,8) on the beach domain 0 < a + 8 < 1. If this system has a single-

valued solution, then
1 32

a(a,O) _ _ICa +8)3/ Lat/a - 1 (5)1

b(x,B) _ I (a + B)32 (at/aB + (6)

must satisfy

0 aa 3/2 b (7)

ab 3 3/2-. a + 0 a ( 8 )

which are the "canonical equations" [5, 8] of (1), (2). Their interpretation is explained

in [15 Section V, ]: a and b are characteristic measures of fluid acceleration of the

waves incident on, and reflected from, the beach, respectively, and (7), (8) give a lucid

description of the mechanism of mutual generation and interaction of these waves. The

coefficient (a + - h 1 /2/4 crystallizes the singular enhancement of this mechanism

as the local water depth h(x,t) + 0; it is the key to all that follows.

(That the canonical equations are linear, is a property of the canonical example which

*helps greatly to make the analysis more lucid. A first impression of the complications

arising with other conservation laws may be gained from brief thought about (1), (2) with

*-',*1 h6(x) # const. All the explicitness of (3)-(8) is then lost, but the essence remains quite

% unchanged [181, as long as h0(x) is reasonably smooth and h6(0) < 0. For more general,

hyperbolic conservation laws in two independent variables, the canonical equations are a

system of four nonlinear, first-order, partial differential equations. That adds much to

V4 %
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the labori the contractions then necessary have been explored in [9]. It is there seen

clearly, however, that the crux is always the nature of the singularity of the coefficients

in the canonical equations, and when the implications of this singularity are analyzed

correctly, the additional contractions fall into place (9]. Of course, fully global

descriptions are not normally achieved thereby, for instance, the influence of the axis

extends quite far in axisymmetric, steady, supersonic flow (10], but not to very large

radii, and the analysis [1, 9] focusing upon the singularity on the axis does not begin to

touch the transonic singularity. The effective domain of such analysis is therefore

generally subject to limitations somewhat analogous to the restriction of the beach

equations to their "confidence domain". For these reasons, (1), (2) with h0 (x) - -x

typify the key features, stripped of all obscuring complications, of hyperbolic

* conservation laws in two independent variables for which the dominant singularity of the

canonical equations is a 'simple pole', as in (7), (8).)

The alternate independent variables

a - a + 4h -,1/2, 
2a - a + X.

a 2t + 2u - 1, 28 - a - A(9)

are useful in the description of singularity structuret X is (15 Section IV] the

characteristic time and a, the characteristic (measure of) shore distance of the beach

4,. equations. To avoid confusion, capital letters will be used to denote the dependent

variables as functions of a and X, e.g.,

t(a,B) = T(a,A), a(a,B) - A(a,X)

etc. The singularity structure of the canonical equations prompts use of dependent

variables

Y(a,X). a - b Z a + b
(10)

a3/2(aT/aX - 1 a 3/2 T/3,

for which (7), (8) take the form

3/2 aY _ a (a3 /2 Z) (11)

-7-
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a-3/2 Z _ a (0-3/2Y) (12)
X 3(12

a 3/2Z and o 1/2y are [15 Section VII] shoreward and longshore mass-flow rates,

respectively. If a and b satisfy (7), (8), it follows that Y and Z must satisfy

the Euler-Poisson-Darboux equations

a2 Y a2 Y 3-

a 2 a 2Y 35 -2

o2 A 0 2  
' ( 13)

az a~ 15 -
aa2  ax2 T _ a- Z  '(14)

which are linear, but singular, wave equations. For convenience, any of the regularized

equations (4), (7), (8), (11)-(14) will be called indiscriminately "apparent equations",

without implication of equivalence.

To complement such equations to an "apparent problem" requires specification of

initial and boundary conditions. Since the original definition, h(x,t) = 0, of the

moving shoreline has been absorbed into the notation, a need for a further condition there

for each of (13) and (14) is plausible. That for (14) was found by Taylor [13]: the

moving shoreline is, by definition, the line across which there can be no fluid mass-flow

and hence, the mass-flow rate a/Z must vanish there. Similarly (15 Section VII], the

longshore mass-flow rate ai/2 must vanish there, if the velocity is to remain finite,

because the water tends to zero. Hence,

lima 1/2Y(a,x)] = 0 , (15)

lim [a3/2Z(oX)] = 0 , (16)
G+fl

are necessary on 'physical' grounds. Observe that existence of limits of Y and Z

themselves is not implied thereby. The mathematical reasons why specification of

lim(a3 /2 Z) and lim(oa/Y) is appropriate, but Z or Y do not normally exist at the

*_ singular locus c = 0, were found by Taylor [19] and Shen [20], respectively, are briefly

% %%
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explained in [21], and will become very clear in the existence proof in Appendix A

below: they are connected intimately with the form of the singularity in (13) and (14).

Since t(a,B) - 0 is a non-characteristic line for the wave equations (13), (14), the

literature would suggest arbitrary Cauchy data specifying there Y, aY/a and Z, aZ/ax.

That is not at all possible for (13), (14), however, because the initial line intersects

their singular locus. On the other hand, Cauchy data near a singular lino of a

differential equation are somewhat academic, in any case, and it will unburden the

presentation considerably to defer the matter to Appendix A. Meanwhile, the significant

issues can be clarified, and the stripping of inessentials from the canonical example

completed, by the adoption of the undisturbed initial state.

For a bounded from zero, (13) and (14) are regular wave equations and their

classical uniqueness theorem (22] shows the undisturbed state to persist for a - 0,

B > 1/2 (i.e., in the triangle AGC in Fig. 2) and, by continuous extension, also

B 1 1/2. That defines (trivial) characteristic data on AG which, together with (15),

(16), pose a singular problem for (13) and (14) in the triangle AOG (Fig. 2). It is a

special case of the problem discussed in Section 3, but too simple a case for its separate

analysis to generate worthwhile insight. It may suffice, therefore, to remark that the

line of argument employed in the existence proof (Appendix A) demonstrates easily that the

undisturbed state persists throughout AOC (Fig. 2). In effect, a wave incident from the

sea enters the beach domain 0 < a 4 1, A -1 at the time t = 01 since its front

propagates along the characteristic a - 0, by (4), it leaves the motion undisturbed for

a 4 0.

The initial condition of undisturbed water at rest can therefore be stated more

conveniently as

u = h + x 5 Y E Z S 0 for a 4 0, a > 0 • (17)

While this simple initial condition adds greatly to lucidity, and also suffices to

guarantee that the ensuing inviscid fluid motion is irrotational, it exacts a price: there

is no way of estimating a priori how long it may take for a motion of real interest to

[-9-
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develop. A useful theory must therefore be free of any restriction whatever on the time-

interval it can cover, it must be uniform in t on (0,).

Since (13) to (17) are all homogeneous, the problem is clearly incomplete. The wave

incident from the sea, which causes the water motion, must be specified at the outer

boundary, a - 1, of the beach domain. On mathematical grounds the most natural choice

for (13) and (14) might seem to specify Y and Z there, respectively [13, 19, 20].

However, Z is symmetrical in the incident and reflected acceleration measures, by (10),

so that Z(I,X) describes, not the incident wave, but an equal amount of partial

information on both the reflected and incident waves, and similarly for Y(1,1). Their

specification would therefore thwart the most important objective of the theory, to analyze

the process of wave reflection up to the shoreline. The physical interpretation [15

Section V] of the canonical equations indicates that a proper characterization of the

incident wave crossing the outer boundary B of the beach domain (Fig. 3) is to specify

there the incident acceleration measure a. By (10), however, that couples the problems

for (13) and (14) in a mathematically awkward manner. Moreover, it does not amount to a

direct characterization of the wave incident from the sea, which has already interacted

with the reflected wave before it arrives at the sea boundary B (Fig. 3). Most of that

early interaction must be expected to have occurred beyond the confidence domain and hence,

cannot be analyzed within the framework of a local model. (This difficulty is not a

general affliction of hyperbolic conservation laws [101.) The issue is therefore not

aggravated by a modification of the incident-wave specification, as long as it does not

prejudice the interaction process in the beach domain. That oblique strip-domain (Fig. 3)

is itself awkward in relation to the wave equations (13), (14), of which the natural domain

is the characteristic rectangle.

A gain in mathematical simplicity and lucidity can therefore be obtained from an

extension of the problem (15 Section IX]: specify the incident acceleration measure a

along the characteristic B = I (Fig. 3) as a function of a,

a(a,1) = a(a) on [0,;] (18)

-10-
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and at the same time, require the apparent equations (4)-(14) to be extended beyond the

beach domain throughout the region between a - 1 and I 1 (Fig. 3).

From (4), the characteristic I - 1 is seen to be the boundary I of the domain of

influence of apparent solutions in the beach domain and hence, (18) cannot prejudice the

process of wave reflection in that domain. Since u - h + x - 0 initially, moreover, (18)

suffices to specify the incident wave on B - 1. Admittedly, the extension of the apparent

equations is somewhat abstract, because the characteristic B - 1 cannot, as a

increases, remain in the confidence domain of (1), (2) as a model of water motion. A part

of the extended solution cannot therefore be expected to describe properties of water

waves, but that does not diminish its relevance in the confidence domain, nor the gain in

mathematical clarity.

To sum up, the apparent problem is to solve (13), subject to (15), (17), (18), or

(14), subject to (16), (17), (18), on the "apparent domain"

a > 0, 0 4 a 4 ;, B 4 1 (19)

bounded by (Fig. 3) the singular line Z, the "initial" line OC, the "incidence

boundary" I and the characteristic N. The last boundary arises because (19) is a

maximal domain: the incidence data (18) cannot determine the solution beyond a -.

Time-uniformity of the theory is equivalent to absence of any restriction on the choice of

u in (18).

It will be observed that, if the beach equations (1), (2) have a strong solution in a

domain, then the characteristic transformation maps it on a definite, apparent solution on

the image of that domain. By contrast, if the apparent problem has a solution, it will

exist on the maximal domain (19), by the linearity of (13), (14). That is the sense in

which the apparent problem regularizes the real, beach problem.

,One may wish that the relation between beach solution and apparent solution be one-

*one, when it exists, and that can be assured by a minor qualification: for the beach

equations, (18) specifies the incident wave on the characteristic line x - xi(t) of which

the incidence boundary I is the image. There $(t) = 1, so a - ai(t) = 2(u + t),

which is a strictly monotone function only if

-11-
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du/dt > -1 along I ( [20)

That inequality in therefore a hidden restriction on (18). If it be unacceptable, however,

it suffices to replace a by a suitable function X(a) as independent variable, in (18),

8(a) is replaced by a function S(X), but nothing of substance is changed. In the

interest of maximal lucidity of notation, acceptance of (20) will be preferred here.

-12-
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3. EXISTENCE

The apparent problem is still ill-posed, however. A preliminary step in coping with

that concerns the function class of the data (18). If the apparent equations were regular,

any class could serve equally well because the solution would preserve the regularity of

the data (22]. For the singular EPD equation, however, this fails: in terms of continuity

classes, e.g., if the input function &(W) C C1 [0,;] in (18), then Y and Z may be only

in C0  in the interior of the domain, not to mention their non-existence at the singular

line. A compromise that can preserve symmetry between input and output was found by Taylor

(19]:

Definition. F(a,)) S L[K] on a subset K of the apparent domain (19) means that

F satisfies a Hoelder condition,

IF(a',A') - F(a,X)I 4 M(K)(Ia' - cly + IX'- Aly) (21)
n

for every y < 1/2 and for all (aX) and (a',V.) in K. Fo,X) . SL means that allL

*0its partial derivatives of order 4 n are in SL(-SL).

To make the apparent problems well-posed requires, first, enough smoothness and an

adjustment of the data (18) to the initial condition (17), and secondly, that any more

direct input functions for (13) or (14) on the incidence boundary I (Fig. 3) be generated

from (18) with careful regard to consistence with the canonical equations (7), (8).

Definition. n-compatible incidence data means both a function &(a) C S n[0,;] in
L

(18) with derivatives R(k)(0) = 0 for 0 4 k 4 n, and also use of (7), (8), (10)

[together with the partial derivatives of order 4 n of those equations) and of

a(a,1) = 9(a) to define functions b(a,O)- y(a,B)o z(a,O) and their partial derivatives

of order 4 n on the incidence boundary B I 1 so that akb/aBk = 0 at a = 0 for

0 k 4n.

It is here understood that only non-negative integers n will be considered in the

following, and it will be observed that (n + 1)-compatibility implies n-compatibility: the

compatibility classes form a nested sequence.

Incidence Theorem. Given 0-compatible incidence data, there exist unique solutions

Y(a,,) of (13) and Z(aA) of (14) on the apparent domain (19) which satisfy (15) to

-13-

, WKX.Vx M&



(18). These apparent solutions, moreover, depend continuously on S(a) and are in

SL[K] on every compact subset K of the apparent domain disjoint from the singular line

CF - 0.

Corollary. For n-compatible incidence data, the apparent solutions Y and Z are

in S[K].

Incidence Corollary. For n-compatible incidence data, the theorem applies to

a n Y/ an and anZ/aAn in the place of Y and Z, respectively.

A proof of the theorem and corollaries is given in Appendix A along lines developed by

Taylor [19]. It should be observed that the proof leaves the number ; arbitrary, so that

the theorem and corollaries respect the requirement of time-uniformity. The following

lema is also proved in Appendix A.

Corollary (Shen's lemma [21]). If the incidence data are 1-compatible, then

Y + Z - 2a and Z - Y = 2b satisfy the canonical equations (7), (8) on the apparent

domain.

The disastrous feature of these theorems, however, is the uniqueness: more than the

mass-flow conditions (15), (16) cannot be imposed at the singular line without jeopardy to

the existence. But by (10),

a1/2y = a2 (aT/3a - _ Z.3T/a,

so that neither (15) nor (16) implies existence of time T or position X on the singular

locus, and it is meaningless to talk of mass-flow rates where time and position cannot be

defined!

Such qualms are not far-fetched, moreover. The singular solution class studied in

[7], and shown in [23] to possess striking physical realism, has the property that all

positive clock-times T occur at a single point of the singular locus and neither T

nor X exist on it at any later characteristic time A. The mass-flow conditions (15),

(16), while physically necessary, are irrelevant to the analysis [4, 5, 7] of that solution

class.

* bThis suggests that it might have been better to study, instead of (13) or (14), the

corresponding wave equation for t(a,$) - T(o,A) itself. The analogous theorem for the

-14-
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apparent problem for T, however, shows it to be well-posed when no more than

lir [ 2T(OX)]
0+0

is prescribed. An extension of the clock-time T to the singular locus does not normally

exist, and that destroys the chance for a useful relation between the apparent problem and

the real problem for (1), (2): a globally well-posed, apparent solution need not

correspond to a globally meaningful solution of the conservation law.

Definition. An apparent solution is admissible means

lim T(aA) Z for each fixed A e (0,2;] o (22)
a0

While this postulates only a conditional extension of time to the singular locus, by

contrast to a proper extension by continuity, it implies (15, Section X] both the mess-flow

conditions (15) and (16). The converse is demonstrated to be false by the theorems just

discussed, however much it be needed for the analysis.

-15-



4. F4GULARITY

These paradoxa pinpoint an issue of central significance for singular partial

differential equations. Normal regularity theory concerns the nature of solutions in the

interior of the domain and its results are non-uniform for singular differential

equations. A further chapter is needed to discuss conditions on the data which can assure

extensions of relevant solution properties to the singular locus. For the problem class

here studied, it can be based on an estimate demonstrating more regularity for all apparent

solutions than the incidence theorem had revealed:

Regularity Theorem. The apparent solutions for n-compatible incidence data satisfy

lim (a 3 n, n) , lim (a a nZ/gAn) - 0 V t > 0
a+0 O+0

and for 0 4 X 4 2.

Even though it may seem curiously indefinite, this theorem is, in fact, essentially

sharp: the problem admits (1, 24] logarithmic singularities in the domain, even if none

are apparent in the incidence data. A proof of the theorem is given in Appendix So its

t, of course, is the 1/2 - y of the SL-efinition (Section 3). As usually, the

significance of the theorem lies in the corollary sequences which it generates, and of

which proofs will be found in Appendix C.

Corollary RI. If the incidence data are (n + 1)-compatible for n ) 0, then for any

c c (0,5/2),

i'alnz/an - 0 as a - 0 for fixed A

Admissibility Theorem. 1-compatibility of the incidence data on [0,a] assures

admissibility of the apparent solution for 0 C X ) 2;.

Corollary Rb. -compatibility of the incidence data assures the assumptions of

Shen's Boundedness Theorem [20, 21].

That theorem formulates conditions which imply non-existence of a resonance mechanism

in the water-wave model represented by the beach equations (1), (2).

Corollary R2. For 2-compatible incidence data on 10,;), a-3/2 = T/ ) - tends2

to a limit as a + 0 for each fixed X e [0,2a).

-16-
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Admissibility Corollary. For 2-compatible incidence data on [0,;)], clock-time

T(U,X) has an extension by continuity to the segment 0 ( A < 23 of the singular line

a = 0.

Corollary R3. For 3-compatible incidence data on (0,;)], a'5/ 2 Z(a,) - a- IT/Ba tends

to a limit as a + 0 for any fixed X e [0,2;) (and therefore, aT/3a + 0 as a + 0).

Corollary R3a. For 3-compatible incidence data on [0,;], a3/2 Y - 3T/3) has a

continuous extension to the singular line a - 0 for 0 4 A < 2;.

Corollary R4. For 4-compatible incidence data, a-5/2Z has a continuous extension to

the singular line.

The pattern of extensions obtained with increasing degree of compatibility will now be

plain enough not to require spelling out in detail. It illustrates clearly that the

compatibility degree classifies the regularity classes of apparent solutions. To

illustrate the context of this result, it may help to recall a familiar experience with

linear, analytic, ordinary differential equations: the number of distinct types of

solution-singularity associated with a singular point of the equation equals the order of

the differential equation. For the nonlinear conservation laws (1), (2), the corresponding

number turns out, luckily, to be no more than countably infinite; the compatibility

definition (Section 3) identifies the counting parameter.

It is worth observing also that the regularity proofs in Appendices B, C place no

restrictions on the number ;. For incidence data of appropriate compatibility specified

on sufficiently long intervals [0, ], the regularity results cover arbitrarily long

intervals of characteristic time X. Once 1-compatibility is assured, moreover, Shen's

Soundedness Theorem [20, 21] shows those intervals to correspond also to arbitrarily long

intervals of clock-time.

0It must be stressed, however, that all the results given so far concern only the

regularized, apparent solutions and that any relation to solutions of the nonlinear

conservation laws (1), (2) still remains to be explored. The objective of the next section

is to explain why the regularity theory of extensions to the singular line is decisive also

in that respect.

-17-
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5. INVZRTIBILITY

To examine the meaning, if any, of an apparent solution for the beach equations (1),

(2), it is necessary to invert the characteristic transformation of Section 2. The

familiar condition that the Jacobian J - a(x,t)/a(,O) do not vanish is known to be

insufficient because it is only a local condition [e.g., 25 and references there cited].

For degenerate characteristic transformations, it may also be unnecessary. In the present

context, the following lemma is shown in Appendix D to give a sufficient condition.

Invertibility Lemma. If an apparent solution for 1-compatible incidence data has both

the properties

(i) at/3a > 0 and at/aS < 0 for a > 0,

(ii) 2aT/aX - 3t/am - 3t/aB ) 61  for a ;o0 and some > 0,

then the characteristic transformation is invertible on the closure of the apparent domain.

O At first sight, the use of the lemma will appear to hinge on the initial signs of

at/a and at/aB and hence, on the choice (17) which makes at/aa - -at/aB - 1/2

initially, by (5) and (6). However, the discussion of initial data in Appendix A shows

them to be compatible with the shore conditions (15), (16) only if those particular values

of at/au and at/a$ are approached on the initial line as a + 0.

The properties i), (ii) in the lemma are not of the kind that can be established by

regularity theory alone, but much light can be shed on the way in which the issue must be

resolved by combining that theory with a fundamental feature of hyperbolic conservation

laws based on their canonical equations S]8:

Monotoneity Theorem. (A) Let a characteristic rectangle be such that

a + a )- a > 0 on it and assume that at/am > 0 and at/a8 < 0 on the closures of

- the rectangle sides on which a and B take their respective minima over the rectangle

closure. Then, for 1-compatible incidence data, the apparent solution has the properties

i) and (ii) of the Invertibility Lemma on the closure of the rectangle.

* (B) Again, let a triangle in the characteristic plane be such that two sides are

characteristic (Fig. 4) and a = const. -01 > 0 on the third side and a ) 01 in the

% triangle, and assume at/3u > 0, at/as < 0 on the closure of the side on which a a

; • -18-
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Then for 1-compatible incidence data, the apparent solution has the properties Wi) and (ii)

on the closure of the triangle.

Proof. The functions

a +a,B) - a(c,O) + a 3/2/4 _ a3/23t/ac ,

b +(,B) - bls,O) - a 3/2/4 - a3/2at/aoB ,

are renormalizations of the characteristic acceleration measures in (5), (6) which leave

the canonical equations (7), (8) unchanged:

U +/aS - -1 (a+ )+ (23)

. 3 )-1l+

b+ / - -. (a + B •a (24)

Moreover,

a+ b + 3/2 T/a,

by (9). In this notation, the conditions (i), Iii) of the Invertibility Lemma read

a+ > 0, b+ < 0 for a > 0 i)

C-3/2 + +
c (a - b + ) ;0 1 > 0 for a ) 0 (ii)

Consider first part tB) of the theorem and recall from the Incidence Theorem and
Shens Ln~aof + en +fo

Shen's Lemma (Section 3) that 1-compatibility assures continuity of a and b for

a > 0 and validity of the canonical equations. As long as b+ < 0, therefore, a+

increases with 6 at fixed a, by (23), from the positive values it takes, by hypothesis,

on the side U of the triangle on which a = const. - a, (Fig. 4). Hence, if a root of

a+  be found in the triangle (Fig. 4), then a root of b +  must also be found at the same

a and smaller B. But similcrly, by (24), if a root of b +  be found in the triangle,

then one of a+  must also be found at the same 3 and smaller a. Either root therefore

implies a succession of roots of a+  approaching the triangle side U arbitrarily closely

(Fig. 4). That contradicts the fact that a+ > 0 near U, by continuity.

Hence, a+ > 0 and b+ < 0 throughout the closure of the triangle and by (23),

(24), a+  increases with B at fixed a, while b+  decreases with increasing a at

-19-
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fixed 0. It follows that

a - b + min a+ - max b+ > 0 (25)

on the triangle closure, where the extrema are those over the closure of the triangle side

U (Fig. 4).

The proof of (A) is quite analogous and leads to the same inequalities, except that

the extrema in (25) are then over the rectangle sides on which a and B, respectively,

take their minima over the rectangle.

The monotoneity argument of the proof illuminates the key role of the canonical

equations in the structure of the beach equations [5] and similar conservation laws [8]:

the canonical equations tell the directions in which characteristic accelerations are

amplified by the 'nonlinear' process of wave generation and interaction.

Invertibility Corollary. If an apparent solution for 1-compatible incidence data

possesses the property (i) of the lemma for 0 4 X < 2a 1 on a line a = const. = a 1 > 0

(Figs. 4, 5), then the apparent solution is invertible for all a ) a I and a 1 in the

apparent domain.

Proof. Apply part (B) of the Monotoneity Theorem to a triangle I (Fig. 5) with the

same a1 and with min a = 0, and then apply part (A) to the rectangle II (Fig. 5); the

Invertibility lemma completes the proof.

The lesson is that, if we can establish invertibility along some line a = air then

the corollary guarantees invertibility at all greater distances from the singular line, but

for 0 4 a < 0, the threat to invertibility remains. As a result, local invertibility on

the incidence boundary I (Figs. 3, 5) is necessary for a direct relation between apparent

4 and proper solutions of the conservation laws (1), (2), but is not of much help in settling

the issue. It can be resolved globally in a favorable sense only by its resolution in the

immediate neighborhood of the singular line.

In fact, the proof of the Monotoneity Theorem demonstrates how it is the sign of the

coefficient in the canonical equations (7), (8) which makes the threat to inversion

decrease with increasing 0, and conversely, increase as the characteristic distance a

from the shoreline decreases. That exemplifies a more general property of hyperbr"

I -20-I
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conservation laws of gas dynamical type [8]. The canonical example reveals in a

particularly lucid way how the growth in magnitude of the coefficient of (7), (8) enhances

this tendency as a - a + B decreases, and enhances it critically as the singular line is

approached. The singularity of the conservation laws thus crystallizes the global tendency

to 'blow-up', which is often thought of as the characteristically 'nonlinear' feature of

such conservation laws.

Ultimately, therefore, the test of global invertibility must concern extensions to the

singular line, and that can be phrased strikingly for data of greater compatibility:

Inversion Criterion. An apparent solution for 3-compatible incidence data is

invertible on the whole apparent domain if, and only if, it possesses the property (ii) on

the singular line itself, i.e.,

lim T/a > 0 for 0 4 A 4 2; . (26)
0+0

Proof. For reference to the regularity theory of Section 4, it is convenient to write the

conditions (i), (ii) of the Invertibility Lenma in terms of Y and Z. By (10), (ii)

translates into

1+ -3/2¥ Y ), for a ) 0 and some 6 I >0 , [ii)

and by (5), (6) and (101, (i) reads

0-3/2 1ZI < 0-3/2Y +2 for a > 0 i)

Since the corollary already assures inversion for a ;0 a if i) holds for a - a1 > 0

and 0 4 X C 2; - Olt it suffices now to establish (i) and (ii) for 0 < a e 01,

0 4 a 4 ; with arbitrarily small a1 and then to apply the Invertibility Lemma.

By the Incidence Theorem (Section 3) and Corollary R3 (Section 4), }o 3/2ZI is

continuous for a > 0 and arbitrarily small for sufficiently small a > 0, and hence,

(ii) will imply (i) automatically, if 01 be chosen small enough. In turn, (ii) then

follows for 0 a 4 a from (26) because a"3/2Y is continuous for a > 0, by

Corollary R3a.

Conversely, since

3x/aX - uT/a - aDT/a,

-21-
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by (4) and (9), and since a BT/3a + 0 as a + 0 for admissible solutions (Section 3), a

root of DT/al at a - 0 coincides with a root of 8X/81 and inversion fails there, at

least marginally.

0

'A-1
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6. AMPLITUDE

A useful characterization of the class of globally strong solution. of the

conservation law (1), (2) requires reference to a more quantitative concept than discussed

so far, which can represent an "amplitude" of the data. Invertibility of the characteristic

transformation on the incidence boundary I itself (Fig. 3) is obviously necessary, and

4(a) > -( 1 + a) 3 / 2  is necessary and sufficient for that, by the compatibility definition

(Section 3) and the Invertibility Leamma (Section 5). A degree of compatibility is clearly

necessary, as well, and the discussion of the preceding section indicates that less than

3-compatibility may be insufficient for a simple characterization of globally strong

solutions. The simplest amplitude concept for them is therefore the following.

Definition: For 3-compatible incidence data S(m) > -(1 + m)3/2/4 on (0,o],

amplitude means

Mal I(a) -

Inversion Theorem. For an incident wave of sufficiently small amplitude 6, the

apparent solution is invertible globally in the strictest sense.

The phrase "in the strictest sense" is here meant to convey that inversion extend

over characteristic-time intervals of quite arbitrary length, provided only that the

incident wave be specified over correspondingly long inter-als, so that the solution

remains determinate. It is worth emphasis that the phrase "sufficiently small" reflects

merely the wish to present a general result susceptible of a very simple proof:

The apparent problem (13)-(18) is linear with inhomogeneous input derived only from

the incidence data (18). By the compatibility definition, Y scales in proportion to 6

4on the incidence boundary, and hence, Y scales in proportion to 6 throughout the

apparent domain. By corollary R2 (Section 4) and (10), therefore, (26) follows for

N Isufficiently small 8, and the theorem is an imnediate corollary of the Inversion

Criterion (Section 5).

The weakness of this result lies clearly in the woolliness of the terms "sufficiently

small" and "too large". It should be observed that the theory is devoid of parameters

-23-
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A

other than , on which the amplitude bound can depend only if the data be specified so

that max1I^ occurs at a - a Since the theory is uniform in time, small or large cannot

refer to coordinate bounds either. There is no rational basis, therefore, to which those

terms can be linked, other than the naivetd of the amplitude definition.

There is no difficulty in defining a "sharp" amplitude for 3-compatible data.

Consider the functional of the data which is

min lim T/3S
(0,2;] a+O

its reciprocal is a sharp amplitude because the Inversion Criterion (Section 5) has the

imdiate corollary that existence of this reciprocal is necessary and sufficient for

global invertibility of the apparent solution. The notion of "small" amplitude is not here

germane. Cbserve that the Riemann representation (Appendix A) offers the means of writing

down formulae representing the functional in terms of the incidence data. They are too

complicated, however, to be of much practical use. (The situation is similar for other

conservation laws of the class typified by (1), (2): A "sharp amplitude" can be defined

constructively, but to derive realistic bounds, is another matter.)

More light can be shed on the issue by applications of the theory [161. For incident

waves which are simple-harmonic in time, far from shore, the amplitude bound is there shown

to be unity. For waves of much more general time-dependence, it is shown to amount

essentially to a restriction on the high-frequency part of the amplitude 'spectrum'. The

Invertibility Corollary (Section 5) shows, incidentally, that the strong solution of the

conservation laws can be extended beyond a - 1, once the Inversion Criterion is

satisfied, and this opens the way for a consideration of the asymptotics of the solution

for a >> 1. It shows [16] that such solutions describe properties of water waves out to

quite unexpectedly large distances from shore. What has to be small turns out [16] to be

the amplitude measure appropriate to strong solutions far from shore. The asymptotic

considerations [16] also indicate clearly how the solution structure far from the singular

line remains controlled by the solution properties in the critical region near the singular

line, which has been the domain of the present study.
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APPENDIX A. M)O0 OF EXISTENCE

It is marginally simpler to focus attention first on Y(oA,) - y(a,) and to extend

the incidence data O-compatibly to (-la + C2] with arbitrarily small ele2 > 0 and

a(%) E 0 for a 4 0 in order to avoid superfluous limits at corners of the apparent

domain (19). Then y is defined on the incidence boundary I (Fig. 6), on which B = 1,

as

3, + f (I( S ) da' - 9(a) (Al)

2 0 a'

which in also in SL[0;'] with 9(0) - 0 and ;' = ; + £2 " Since C > 0, (13) is a

re ular differential equation on the subdomain 0 C U 1 ;', 2 ei 1 B C 1 (Fig. 6) and the

initial data (17) and incidence data (Al) pose for (13) a classical problem on this

subdomain, which is known (22] to be well-posed and to preserve the regularity of the

data. In particular, the moutput function" y(;',B), which describes the reflected wave

issuing from the subdomain, is in SLM2,1,].

To solve the apparent problem in the rest of the domain, where B < 0 (Fig. 6)

requires appeal to the shore condition (15), and the device for simplifying the proof is to

postpone that. Instead, start by extending the output function y(;'#B) just mentioned to

any function

Y(O) e SL[3 - Q',I]

with aibitrary e3 > 0 and y(0) = y(;',O) for B > 0. As long as a + = o e 3 (13)

remains regular and the data D(a), i() set a classical, characteristic boundary value

problem, which is well-posed [22] and of which the solution y(C,q) has the Pliemann

representation (22]

y(C',l) - () + r(i) - (,f + f 9(a) - do + f ;(0) % d (A2)

for + n a > c 3 where
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R( " - , 2 1, -C), C - l - i) (A3)2 2a + $)a

is the Riemann runction (22] of (13) and

Cz (G - o- ) (at a', Fig. 6)

(I + ;')s

RI = R(CI), C (a - 00( - 0) (on 1)(1 + a).

% R(CM), C1, G(  - )( - q) (on M) ,

G, + B)s

Theme values of C are > 0 and also bounded, as long as a ; e3 > 0, and R(C) is then

analytic, so that (W2) shown explicitly how Y(9,) C SL(K) on any subdomain K where

a o £3 . And of course, (A2) agrees with the solution mentioned earlier on the subdomain

0 6>0.

If the restriction a ) e3 > 0 is abandoned, however, then C * - as

- + n + 0 (except on PN and IM', Fig. 6) and

=- ( - q)(0 + C) j. (a - C)(a + y) (A4)
De (a + B) 2 f (a + B)2s

tend to - similarly, and [26]

C 1/2R(C) 4/wr C1/2 R'(C) + 2/w , (AS)

and the representation (A2) of y(C,n) fails. on the other hand,

lia (8) - (a + n)(0 - +)/(a + B) - CO
9.0

(A6)

.ih (s1/2 (C)] - A0  1i (s- 1/2R'(C)) -

4 -2Co1/2/A

O are defined and therefore, the 'quasi-Riemann' representation of the longshore mass-flow

rate L ( 1m + ) 1/2y(a, ), which (A2) for s ) shows to be

-26-
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IC .ii) 1/2 [ () + y(n) - Y(G')R(C H

+ f R(() I/2 )dG + f ;(O)s/ a- R(-) , W)

C r

does have a continuous extension to the singular line a - 0 for n ) -u.

-bserve now that a function y(gn) has been displayed in (A2) which satisfies (13)

for C + n > 0 and satisfies (17) and (18). By (A), the shore condition (15) then

amounts to the lit-integral equation

1 1/2 ac_

li- f ;(O)s 1/ fo- _ '
X+O n

l/2 (Cl ; 1/2- y(a') ha 5 ( 3 ] - 1,- f 9(u)s / j I'( z)& (A8)

5+0 5.0

for the output function ;(6) on [-;,0].

Now, if (AS) really had a solution ;(0) in SLO then not only would existence be

established, but a slightly better description [261 of R(C) than (AS) would also show

readily that lin f - f lim in (AS), which would then be an Abel equation,

n
__;.+n) 3/2 -1/22 -3/2

= 2 [ 9(;,) . (C ) (+n)'1/2(1+n) g(M)(;'+I) -ni

. (;'+n)3 / 2 g(n) , (A9)

say, with g(n) known in terms of the incidence data (AI).

That the distributional solution of (A9) is

= 2 3/22 1

y(6) (;.+0)
3
/
2 

d f (.P)1/2 g()du (AI)
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is seen readily (27]. That it is also a classical solution, is best shown by a somewhat

laborious, direct calculation of the righthand side, using the SL-property of f(a) to

justify interchanges of operations by standard arguments in order to check that this

expression is defined and integrable and satisfies (A9). Uniqueness then follows from the

Fredholm Alternative. By carrying this calculation considerably further along the same

line, it is also found (19] that the righthand side of (A10) is, in fact, in SL['4,1],

whence it satisfies also (AS) and is therefore the function that should have been chosen

for y(0), in the first place, to obtain the representation (A2).

Since it has already been noted that y(g,n) has then the regularity claimed in the

theorem and since its uniqueness and continuous dependence on the data for E + n e £3 is

classical (22] V £3 > 0, and since t(g,n) cannot have two extensions by continuity to

+ -= 0, the proof of the theorem is complete for Y.

That for Z is closely analogous, the difference is that the Riemann function of (14)

is more singular (26] as C + -, so that the parallel argument yields an extension to

C + r = 0 only for the shoreward mass-flow rate 03/2Z.

The relation of the apparent problem to the Abel equation (A9) shows, incidentally,

why the function class SL (Section 3) is the one yielding symmetry in the regularity of

input 9 and output j. (This also carries over clearly to other conservation laws for

which the singularity in the canonical equations is a pole with half-integer residue.)

Tb obtain the Incidence Corollary (Section 3), it now suffices to observe that

anY/,An and 3nZ/aAn also satisfy (13) and (14), respectively, because the coefficient

functions of those equations are independent of A, and n-compatible incidence data pose

for those derivatives exactly the problem which the theorem treats for Y and Z. The

other corollary then follows by recursion from inspection of the integral for 3 n-y/ n-I

in terms of 3n1/,,n .5(K~), etc.

Proof of Shen's Lemma (20]. If

3b +3/2 a h ad aa 3/2 b---+ - f and + b=-gha a+B 3 a+1B

say, then the apparent equations (13), (14) for Y and Z read

fl3B - - (a + B) g, ag/a -1 (a + B) f
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Comparison with (7)-(10) shows Kic,).) - f - g and H(u,).) - f + g to satisfy (13) and

(14), respectively, with zero initial and incidence data, by the definition of

1-compatibility. By 15),

a 3/ 2 ay,/30 - 03(a 1/2 Y),30 - a 1/2Y/2 + 0

as a + 0, and by the Incidence Corollary, also 03/2 3Z/. + 0, whence

a3/2H 3 !1/2y + 203/2(OZ/ak _ ay/30) + 0
2

as well. That establishes for H all the assumptions of the theorem for Z, and by the

uniqueness, H = 0 on the apparent domain. But then, Z - 2f - 2g and

E/3X- 3a 1/2 - 0, whence 2 - 0 as well, because it vanishes initially and on the

incidence line I tFig. 3).

General Initial Conditions. For the wave equations (13) and (14), there is no

significant loss of generality, and a considerable gain in lucidity of notation, in

envisaging initial data of Cauchy type on the line X - -1 (Fig. 2). The issue to be

addressed now concerns the restrictions on general Cauchy data there arising from the

singular nature of the conservation laws (1), (2) for solutions of the type obtained in the

Incidence Theorem.

It will have been observed that the formulation of Section 2 sets, not independent

problems for (13) and for (14), but a related problem pair. This is achieved there,

- somewhat inconspicuously, by specifying in (18) just one function, a(a, 1), from which

more direct input data for Y or Z are to be generated by the canonical equations,

according to the compatibility definition (Section 3). In the same way, Cauchy data for

(13) and for (14) cannot be independent, if the apparent problem is to concern the

conservation laws (1), (2). It is possible to prescribe Y and 3Y/31 independently Vn

the initial line A - -1, but then no choice is left in the prescription of Z and BZ/3,

and vice-versa. For nclinear wave equations, such as (1), (2), it is always more natural,

and promotes lucidity, to specify canonical variables and hence, it will be envisaged now

that the acceleration measures (5), (6) are to be specified for X - -1 as functions

a - Ao(a), b - DOW
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for 0 4 a 1 1, and that Y, aY/aX, Z and aZ/DX are there to be computed from A0

and B0 by (10) and by the canonical equations (11), (12).

To determine the type of functions that can be specified# it helps to direct attention

first to the case of 0-compatbility and secondLy, to begin by specifying %(a) and

B0 (a) only for 0 < £3 4 a € 1, i.e., on the line segment A&C (Fig. 7). That sets a

clasical problem [22] for the square domain A'E'CO' (Fig. 7), because (13) and (14) are

there regular wave equations, and hence, this specification is equivalent [22] to that of

a along K'C' and of b, along GoC or along WS' . To obtain solutions in the class

SL(K) of the Incidence Theorem (Section 3), it is clearly necessary that

A0 (0),B 0 (a) C 8L[C3',1] V £3 > 0 • (All)

This is also sufficient to generate a unique solution (22] in the class 8 L on the square

&IEMCS', because the classical problem preserves the regularity of the data [221.

The apparent domain, however, has now been extended to -(1 - e3)/2 4 a 4 ;,

£3 < a < I + ;, and to obtain a solution in 8 L on this domain, the condition

A0 (1) - R(0) (A12)

must also be imposed. It is necessary because a discontinuity of a(a,B) at C (Fig. 7)

would "propagate" along a - 0 and be reflected (1] from the singular line as a

logarithmic singularity of b(aj). It is also sufficient, because it assures that

a(a,1) e SL[(£ 3 - 1)/2,3] all along the incidence charcteristic 0 - 1.

The interesting part of the question, of course, is what conditions on 0 (o) and

B0(a) arise near a = 0 when we now let £3 + 0. From (10), (15) and (16), it is clear

that the mass-flow rates

a 1/2(A 0 - B0 - L(a) and a 3/2(A0 + B0 -(oi)

must tend to zero as a + 0. The proof of the Incidence Theorem, however, depends on

interchanges of operations for which it is necessary and sufficient to appeal to (15) end

(16) also in the sense that 3(0 1 /2y/a + 0 and Ma 3/2Z)/3X + 0 as a + 0. To

L(O) + 0 and M(W) 0 as a + 0

must therefore, by (11), (12), be added that
oI ( a ) + 0 and L'() 0 as a + 0 (A13)
-1
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The Incidence Theorem (Section 3) might suggest that the conditions so far listed be

sufficient, but the Regularity Theorem (Section 4) shows that apparent solutions for

0-compatible data possess additional regularity near the singular line. For consistency

with this, L + 0, M + 0 is not enough, but

ae-1/2L(a) + 0 and a -1'/2K(O) 0 as a + O, V C > 0 (A14)

is sufficient.

For apparent solutions corresponding to higher degrees of compatibility, the

conditions (AlI)-(A14) must, of course, be extended to further derivatives in the way

clearly indicated by the corollaries of Sections 3, 4 and the arguments just listed.

It should also be remarked that, to preserve the theorms of Sections 3-6 in the case

of general initial data, (A1I)-(A14) and their extensions to further derivatives must be

added to the definition of compatibility (Section 3), lengthening it to a half-page of

print... The consequent loss of lucidity in presentation and proofs is one reason for

stripping the canonical example of conservation laws down to (17). It is reinforced by the

observation that, while initial data play an important textbook role, the mathematically

natural formulation for hyperbolic systems generates solutions by incident waves. From the

point of view of the mathematical structure of such laws, initial data only inject a

remnant of a wave process that should really have been described by the solution.

.?
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APPNNDIX B. PROOF OF REGUJ RITY.

The structure of the proof will be clarified by focusing attention first on

Y~oA - y(*,B) in the case of 0-compatible data on 10,;]. For simplicity of notation

also, (A2) may be used with e2 - 0, a' - Cl so that it reads

S+ ~ -9(;)R~ + f ju) .. R(CI)d + f y($)L R(C,)d8 (BI)

with the Riemnn function (A3) and

1 - g il1 - n
S (a + 1)s at X (Fig. 8),

¢I ( - )(1 - ~ n)
(M + 1)s

.~ ~( 1 - g l(5 - nI) o n ,

1; on N

and again

1/2
It is helpful to consider s R(C) - Q(s ;s) as a function of sC, and of a as

parameter, and to relieve the notation of the reference to the residual dependence on s

by writing

a 1/2 R C) - QsC) . (B2)

lir [s 1
/2R( )] - Q(lim SC) , (B3)

s.0

and in the first integral of (BI), where B = 1,

i -C)( -n)/(a+a) " T(a), lir (scil = rO(a) , (B4)

* while in the second, where a = a,

. ,, "..- . " ( - -- . , , - ...(), li BY 6 a) .(B( 5)
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An shown in Appendix A, the output function

i(m) = y(;,B) C S L[-,I] , (B6)

and a /2y(Cn) + 0 as a + 0 in such a way that the limit commutes with the integrals to

give (AS) in the form

a a) 1

0 - -(a)Q(T(;)> + f ^(a) FQ( o)da + f () j -Q(80Od • (B7)

To explore now just how s /2y(C,n) + 0, multiply both sides of (B1) by s1/ 2 and

• then subtract (B7):

1/2(e 1
al/2y(gn) f [ y(6) ) [Q(e)-Q(e)]dB + f [j(a)-9;(1 a QIT)

+ sa /2[Y() + y('i) - Q(a)] - f [(9()-9( )] - Q(o)da (BB)
• -n

because R I for a = and for B " r, regardless of the value of s. This is a

second quasi-Riemann representation of the longshore mass-flow rate o1 /2Y, which is more

delicate than (A) and can be used to advantage, once the Incidence Theorem has established

(B6). It may be noticed that (BS) compares the values of a1/2 at P and P0  (Fig. 8),

so that it contains information only on the manner in which s1/2y(,y) + 0 as

s -[ + n + 0 at fixed n. However, if the representation were to be arranged so as to

give information as s - + n + 0 at fixed E (i.e., vertically, in the Figure, instead

of horizontally), then 9 and i would simply switch their roles; and if other approaches

to the singular line were to be studied, then 9 and i would appear in quite similar

ways in the representation, at a considerable expense in additional notation. What this

remark serves, is to demonstrate that the information from (B8) is the general one, because

y and ^ are in the same function class SL and no more has been specified for

Seither. If they were not both in SL, on the other hand -- and there is some latitude in

the choice of incidence theorems, if such asymmetry of input and output be accepted -- then
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the manner of approach to the singular line would make a difference to the result and the

regularity theorem would be more complicated.

To deduce the present Regularity Theorem from(BS), only the integrals there need

scrutiny, because j and y are bounded, by (Al) and (96). The first integral in (98) is

6(1)
I= y()[Q'(8) - Q'(o)deO/dede0

and from (B5),

80 (B) - e(B)(l + - ) • (9)
ci+f-s

The rapid variation of the Riemann function near B n i (Fig. 8) prompts a split:

s1/2 d 0  d 0

ill f y(s)[{Q' (8) - Q'(o 0 )} W- + (1 - e-)Q'(O)]dO
o

e1/2 0

f _ y(_ ) [sQ, (8) + (; + n) f Q(T)dr]de

0 u+n-s e

and since Q'(8) - s-1 2 R'(C) and Q"(O) = a-3 2 R"(4) and 0-6 - se/(a+n-s) and

furthermore, R'(C) and R"(4) are analytic on [0,.) and tend to zero as C -,

I b l ir-u I i I-,
II <slub :- 1. 01+ lib- +'mal I I

where the lub's are over the segment of characteri tic a - c on which 0 C e 4 a1/2 . But

there, only y varies with 8(B) and it is bounded, by (97). For any given n,

moreover, a positive lower bound on & + Ti - s is guaranteed by an appropriate choice of

c, which is quite unrestricted. Hence, s111, is bounded as s 4 0.

The rest of I, is

8(1) de

I12 / f (B)Q'(8) - Q'(eO) --]de

S
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and for mall a and 6 s 2 C - 0/s >> 1 and by (A6),

Q'(e) - s () 2. e- 12[1 + o

so that

Q'(8 O ) dO 0 1/2-'-, - i-(--) [,.,.+ 3-, - " ( €+oc0(a ))
2a + 2n

by (89), and

a (() 1/2
1 1, f y(l)[1 + 0(a )]dQ
12 2+ 2n 1/2

Q(a

Since wQ(0(1)) - 46 100)]1/2 and Q(s1 2 ) 4s I/4, by (A6), also s 112 is bounded

as s + 0 when a is chosen appropriately.

To estimate the other two integrals in (B6), note that on I, between Jo and R

(Fig. 8), where B - 1,

T(a) = > 0, T0 (CO - T(0) + s(M-n)/Ca+l) > 'ra)

by (B4), and itiversely,

Cr )-a - a)E )n
1 - T

,o'-.(
0  - -) + a (T0 1( a (B10)"I 1 - n - T0 0 - o - 1 - 0 (B.t)

I. "The other two integrals in (BS) together are therefore

[[(a(v)) - i(;(v))]Q'(v)dv - f 9C;((t)) - j(;)]Q'CT 0 )dT00 Tr(00

For the first of these new integrals, 0 4 v 4 T(;) makes, by (Al),
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S1(=)- j(a)l 4 .1 ca(v) - a(v)' m1sl 1- - mlsyll v I, n ,--v-- I n -

4 - "(I) 1 = m. ;+ 11y 4 Y
1 - 1 2

for every y < 1/2 and numbers ml, m2  independent of a and s. For the other

integral, since dT 0/da > 0 and a(T(;)) 
=

Ci(T 0W)) = a, it is seen that

T(;) T 0 (;) implies

; >(( ) a(T(;)) = c- s(1 - n)/(l - n- T())

and

1y( (T) - 9(;)I < m 1 ; - (%)1

C" m1 3 - 3(T(3))I = SYl1 n)  1  ' m2 s

I[ .,.'by (B10) and (B4). Therefore

1121 M =sIlls R(I ±) - T + 
1 

0 ) 2 ) jI

and by (A5), R(T(;)/s) = 0(s-1/2), but

T 0 () -) -1/{[T 0()] [()]/2 = 0(81/2)

so that 1121 4 m3sY. Hence, (B8) has been shown to imply that

s/1/2-y( ,n)

* is bounded independently of E for all sufficiently small s ; 0 and for all y < 1/2.

If the incidence data are n-compatible, then the same proof applies to aY/B) n
, by

the Incidence Corollary (Section 3). The proof for 3 nz/3 n is analogous: the only

difference is that the Riemann function of (14) has a different branch point at
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APPENDIX C. PROOFS OF REGULARITY COROLLMUAES

RI. By Shen's edma (Section 3), the canonical equation (11) assures

3 (,32 nZ.a3/2 3n Y
ax ax3/n n

By the Incidence Corollary (Section 3), a 3/2anz/X n + 0 as a + 0, so that

aC_1 a nZax) = l v(3.2e)/2(vc )n+ ,)dv

ax
n  0 axn+l

and by the Regularity Theorem a e3n+I Y(o,X)/3 Xn+l + 0 am a + 0.

Admissibility Theorem. For any fixed a0 e (0,1], (10) and the Incidence Theorem

assure existence of T(0,) for X ([0,2a - a0]. Again by (10), for a > 0,

T(a,X) - TlO 0 ,X) - T C-Iz(T,X)T'cI/ 2 dT
a 0

and by Corollary RI with 0 < < -i, the integral tends to a limit am a + 0 for fixed

X.

Ria. It has been shown in (15, Section X] how admismibility of the apparent solution

implies the assumptions of Shen's [17, 21] proof with the exception only of integrability

of a-1/2Y(a#X) with respect to a up to a - 0 for fixed X. That integrability

follows from the Regularity Theorem for n - 0 and, e.g., e - 1/4.

R2. By Shen's Lma (Section 3) and (12),

a CIz/ax- ao+1/2'3( /2 Y)/3 0

and the lefthand side tends to zero with a for 0 < c < 5/2, by Corollary RI. For

0 < a0 < 1, therefore,

-3 /2 Y(O,) - a0
3/2  A) + f *r- a (,

0 a 0 7Xc+1/2

and for £ - 1/4, e.g., this integral tends to a limit an a * 0.
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Admissibility Corollary. The Incidence and Admissibility Theorems define a function

T(a,k) on [0,1] x [0,2;1. If that function were not continuous at a - 0, - 1  for

some c [0,2;), then the limit of aT/OX could not there exist, contrary to Corollary

R2.

R3. By Shen's Lema (Section 3) and (11), (16),

a 3/2Z(O,A.) fa "3/28 Y(rX)d
0

for 0 < a < 1, so that

"5/2 Z(a,X) - f v 3(va)"3 / 2  Y(va,A)dv
0

By Shen's Lemma and (12), in turn,

a-3/2 Wax - -3/2 ¥/.0 + a V C' 1 -2 Z(Td) r+

0 Ia, a 0  a2 Tel1/2

for 0 < a0  1 1, and this tends to a limit as a + 0 for fixed X, by Corollary Ri.

R3a. The Incidence Corollary (Section 3) and Corollary R2 define a function

Y-3/2y(o,A) - H(a,A) on [0,1] x (0,2; - a], continuous for a > 0. If H(0,A1 ) were

not continuous at some YI, then H/3A could not both (a) be continuous for a > 0 and

(b) have a limit as a + 0 for A - Al. The Incidence Corollary for n ) I assures (a),

however, and (b) follows from the analog of Corollary R3 concerning a-3/2 3Y/3X available

for 3-compatible data because 3Y/3A satisfies the Incidence and Regularity Theorems

with n - 0.

A parallel argument for Z and 3Z/a proves Corollary R4.
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APPENDIX D. PROOF OF THE INVERTIBILITY LE A

Let D denote the apparent domain (19) and 0, its union with the singular line

segent a- 0, o 4 A 4 2;.

Convexity L-a. The assumptions of the Invertibility Lemma imply that any two

distinct points I, II in 5 at which the clock-time T takes the same value, can be

connected with D by a continuous curve T(a,X) - const. on which a varies strictly

monotonely.

Given this lemma, if global invertibility of the characteristic transformation on

were false, i.e., if a pair of distinct points I, II in D could be found which map into

the same (X,T), then a curve T(a,X) - TZ - TI would connect them and a could serve

as the parameter on it. On this curve, by (9),

dX/da - (at/aei + Bt/30)/Ma/30 - 3t/am) (D.1)

which is continuous in D, by (9), (10) and the Incidence Theorem and by the assumption

(ii) of the Invertibility Lemma, and has the bound

Id/dal < 1 , (D.2)

by the assumption (i). By (4), (9) and (D.1), moreover

dX att / at at- / < 0

on this curve in D, by (i) and (ii). Hence, Xi - X, is incompatible with TI, - T,

for distince points in D.

To prove the Convexity Lemma, note that distinct points at which both TT - T, and

aIi= aI cannot occur in D because of the strict monotoneity of T in X at fixed a

implied by (ii): the points may be labeled to that

Since (ii) shows the righthand side of (D.1) to be defined and continuous in D for

1-compatible data, a continuous curve A X - X(a) with the local slope (D.1) may be

traced from II in the sense of decreasing a. On A, clock-time T - const - T I, and

the bound (D.2) shows that A must lead, if not (a) to a boundary point III of D at

which a > 0, then (b) to a point in D of the singular line 0 0.
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In case (b), A must intersect the line a - conat. - aI o 0 and that can be only at

the point I, by (ii). The same conclusion applies in case (a), if aIII  a The proof

will therefore be complete, if (a) is shown incompatible with aII I > aI: As A is traced

in the sense of decreasing a, (D.2) and (9) show a and $ to decrease also, , that

III must lie on the boundary segment O of D (Fig. 3). Therefore, I can be reached

from III by following first C in the sense of decreasing a until a - a and then

following the line a - const. - aI to I. On the way, T increases along CO, where

a - 0 and u - 0, by the initial condition (17), and so by (9), a + 2T - const; and

T increases also along the rest of the way, by (ii). Hence T, > TIII = TII, contrary to

hypothesis.
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